Description
近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。
某天,园长给动物们讲解KMP算法。
园长:“对于一个字符串S,它的长度为L。我们可以在O(L)的时间内,求出一个名为next的数组。有谁预习了next数组的含义吗?”
熊猫:“对于字符串S的前i个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作next[i]。”
园长:“非常好!那你能举个例子吗?”
熊猫:“例S为abcababc,则next[5]=2。因为S的前5个字符为abcab,ab既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出next[1] = next[2] = next[3] = 0,next[4] = next[6] = 1,next[7] = 2,next[8] = 3。”
园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在O(L)的时间内求出next数组。
下课前,园长提出了一个问题:“KMP算法只能求出next数组。我现在希望求出一个更强大num数组一一对于字符串S的前i个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作num[i]。例如S为aaaaa,则num[4] = 2。这是因为S的前4个字符为aaaa,其中a和aa都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而aaa虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理,num[1] = 0,num[2] = num[3] = 1,num[5] = 2。”
最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出num数组呢?
特别地,为了避免大量的输出,你不需要输出num[i]分别是多少,你只需要输出对1,000,000,007取模的结果即可。
Input
第1行仅包含一个正整数n ,表示测试数据的组数。随后n行,每行描述一组测试数据。每组测试数据仅含有一个字符串S,S的定义详见题目描述。数据保证S 中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。
Output
包含 n 行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对 1,000,000,007 取模的结果。输出文件中不应包含多余的空行。
Sample Input
3
aaaaa
ab
abcababc
Sample Output
36
1
32
HINT
n≤5,L≤1,000,000
Source
Solution
还是有点糊涂……毕竟人太弱 沿着fail数组统计答案,时间复杂度做到 O(n)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef long long LL; const int SZ = 1e6 + 10; const int mod = 1e9 + 7; int len, fail[SZ]; LL num[SZ], ans; char s[SZ]; void GetFail() { fail[1] = 0; num[1] = 1; for(int i = 2; i <= len; i++) { int p = fail[i - 1]; while(p && s[i] != s[p + 1]) p = fail[p]; if(s[i] == s[p + 1]) p++; fail[i] = p; num[i] = num[p] + 1; } int p = 0; for(int i = 2; i <= len; i++) { while(p && s[i] != s[p + 1]) p = fail[p]; if(s[i] == s[p + 1]) p++; while(p > i / 2) p = fail[p]; (ans *= (num[p] + 1) % mod) % mod; } } int main() { int T; scanf("%d", &T); while(T--) { scanf("%s", s + 1); len = strlen(s + 1); for(int i = 1; i <= len; i++) fail[i] = 0, num[i] = 0; ans = 1; GetFail(); printf("%lld\n", ans); } return 0; } |