Loi_Vampire's Blog

自己选择的路,就算跪着也要走完

01/7
11:10
LCT 图论

BZOJ 3282 Tree LCT

Description

给定N个点以及每个点的权值,要你处理接下来的M个操作。操作有4种。操作从0到3编号。点从1到N编号。 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。保证x到y是联通的。 1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。 2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。 3:后接两个整数(x,y),代表将点X上的权值变成Y。

Input

第1行两个整数,分别为N和M,代表点数和操作数。 第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。 第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。

Output

对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。

Sample Input

3 3
1
2
3
1 1 2
0 1 2
0 1 1

Sample Output

3
1

HINT

1<=N,M<=300000

Source

动态树

 

 

LCT的板子题……

 

01/6
17:24
LCT 图论

BZOJ 2631 tree LCT

Description

一棵n个点的树,每个点的初始权值为1。对于这棵树有q个操作,每个操作为以下四种操作之一:

+ u v c:将u到v的路径上的点的权值都加上自然数c;

-  u1 v1 u2 v2:将树中原有的边(u1,v1)删除,加入一条新边(u2,v2),保证操作完之后仍然是一棵树;

*  u v c:将u到v的路径上的点的权值都乘上自然数c;

/ u v:询问u到v的路径上的点的权值和,求出答案对于51061的余数。

Input

第一行两个整数n,q 接下来n-1行每行两个正整数u,v,描述这棵树 接下来q行,每行描述一个操作

Output

对于每个/对应的答案输出一行

Sample Input

3 2
1 2
2 3
* 1 3 4
/ 1 1

Sample Output

4

HINT

数据规模和约定

10%的数据保证,1<=n,q<=2000

另外15%的数据保证,1<=n,q<=5*10^4,没有-操作,并且初始树为一条链

另外35%的数据保证,1<=n,q<=5*10^4,没有-操作

100%的数据保证,1<=n,q<=10^5,0<=c<=10^4

Source

 

LCT……用了long long在BZOJ上是TLE,改成unsigned int 就好了。 TAT

 

01/5
21:50
LCT 图论

BZOJ 2002 [Hnoi2010]Bounce 弹飞绵羊 LCT

Description

某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000

Output

对于每个i=1的情况,你都要输出一个需要的步数,占一行。

Sample Input

4
1 2 1 1
3
1 1
2 1 1
1 1

Sample Output

2
3

HINT

 

Source

 

画画就发现是个图,用LCT维护即可

 

01/5
21:42
LCT 图论

BZOJ 2049 [Sdoi2008]Cave 洞穴勘测 LCT

Description

辉辉热衷于洞穴勘测。某天,他按照地图来到了一片被标记为JSZX的洞穴群地区。经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴。假如两个洞穴可以通过一条或者多条通道按一定顺序连接起来,那么这两个洞穴就是连通的,按顺序连接在一起的这些通道则被称之为这两个洞穴之间的一条路径。洞穴都十分坚固无法破坏,然而通道不太稳定,时常因为外界影响而发生改变,比如,根据有关仪器的监测结果,123号洞穴和127号洞穴之间有时会出现一条通道,有时这条通道又会因为某种稀奇古怪的原因被毁。辉辉有一台监测仪器可以实时将通道的每一次改变状况在辉辉手边的终端机上显示:如果监测到洞穴u和洞穴v之间出现了一条通道,终端机上会显示一条指令 Connect u v 如果监测到洞穴u和洞穴v之间的通道被毁,终端机上会显示一条指令 Destroy u v 经过长期的艰苦卓绝的手工推算,辉辉发现一个奇怪的现象:无论通道怎么改变,任意时刻任意两个洞穴之间至多只有一条路径。因而,辉辉坚信这是由于某种本质规律的支配导致的。因而,辉辉更加夜以继日地坚守在终端机之前,试图通过通道的改变情况来研究这条本质规律。然而,终于有一天,辉辉在堆积成山的演算纸中崩溃了……他把终端机往地面一砸(终端机也足够坚固无法破坏),转而求助于你,说道:“你老兄把这程序写写吧”。辉辉希望能随时通过终端机发出指令 Query u v,向监测仪询问此时洞穴u和洞穴v是否连通。现在你要为他编写程序回答每一次询问。已知在第一条指令显示之前,JSZX洞穴群中没有任何通道存在。

Input

第一行为两个正整数n和m,分别表示洞穴的个数和终端机上出现过的指令的个数。以下m行,依次表示终端机上出现的各条指令。每行开头是一个表示指令种类的字符串s("Connect”、”Destroy”或者”Query”,区分大小写),之后有两个整数u和v (1≤u, v≤n且u≠v) 分别表示两个洞穴的编号。

Output

对每个Query指令,输出洞穴u和洞穴v是否互相连通:是输出”Yes”,否则输出”No”。(不含双引号)

Sample Input

样例输入1 cave.in
200 5
Query 123 127
Connect 123 127
Query 123 127
Destroy 127 123
Query 123 127
样例输入2 cave.in
3 5
Connect 1 2
Connect 3 1
Query 2 3
Destroy 1 3
Query 2 3

Sample Output

样例输出1 cave.out
No
Yes
No
样例输出2 cave.out
Yes
No

HINT

数据说明
10%的数据满足n≤1000, m≤20000
20%的数据满足n≤2000, m≤40000
30%的数据满足n≤3000, m≤60000
40%的数据满足n≤4000, m≤80000
50%的数据满足n≤5000, m≤100000
60%的数据满足n≤6000, m≤120000
70%的数据满足n≤7000, m≤140000
80%的数据满足n≤8000, m≤160000
90%的数据满足n≤9000, m≤180000
100%的数据满足n≤10000, m≤200000
保证所有Destroy指令将摧毁的是一条存在的通道本题输入、输出规模比较大,建议c\\c++选手使用scanf和printf进行I\O操作以免超时

Source

 

简单的LCT操作

判断是否连通,只需看两个节点的祖先是否相同。