Loi_Vampire's Blog

自己选择的路,就算跪着也要走完

02/24
07:53
图论 网络流

BZOJ 1221 [HNOI2001] 软件开发 网络流-费用流

Description

某软件公司正在规划一项n天的软件开发计划,根据开发计划第i天需要ni个软件开发人员,为了提高软件开发人员的效率,公司给软件人员提供了很多的服务,其中一项服务就是要为每个开发人员每天提供一块消毒毛巾,这种消毒毛巾使用一天后必须再做消毒处理后才能使用。消毒方式有两种,A种方式的消毒需要a天时间,B种方式的消毒需要b天(b>a),A种消毒方式的费用为每块毛巾fA, B种消毒方式的费用为每块毛巾fB,而买一块新毛巾的费用为f(新毛巾是已消毒的,当天可以使用);而且f>fA>fB。公司经理正在规划在这n天中,每天买多少块新毛巾、每天送多少块毛巾进行A种消毒和每天送多少块毛巾进行B种消毒。当然,公司经理希望费用最低。你的任务就是:为该软件公司计划每天买多少块毛巾、每天多少块毛巾进行A种消毒和多少毛巾进行B种消毒,使公司在这项n天的软件开发中,提供毛巾服务的总费用最低。

Input

第1行为n,a,b,f,fA,fB. 第2行为n1,n2,……,nn. (注:1≤f,fA,fB≤60,1≤n≤1000)

Output

最少费用

Sample Input

4 1 2 3 2 1

8 2 1 6

Sample Output

38

HINT

 

Source

 

Solution

所有的毛巾可以分为两类:第i天要用的 和 第i天用完的。

第i天用完的毛巾可以以后处理,即向i+1(1≤i+1≤n)天连一条流量为INF,花费为0的边;也可以采用A种方式清洗,即向i+a+1+n(1≤i+1+a≤n)天连一条流量为INF,花费为fa的边;同理采用B种方式清洗也是这么处理。

第i天要用的毛巾也可以直接购买,由超级源s直接连一条流量为INF,花费为f的边。

超级源向每个点i连一条流量为ni,花费为0的边,每个点i+n向t连一条流量为ni,花费为0的边,限制流量。

 

02/22
15:22
图论 网络流

BZOJ 1834 [ZJOI2010]network 网络扩容 网络流-费用流

Description

给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求: 1、 在不扩容的情况下,1到N的最大流; 2、 将1到N的最大流增加K所需的最小扩容费用。

Input

输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。 接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。

Output

输出文件一行包含两个整数,分别表示问题1和问题2的答案。

Sample Input

5 8 2

1 2 5 8

2 5 9 9

5 1 6 2

5 1 1 8

1 2 8 7

2 5 4 9

1 2 1 1

1 4 2 1

Sample Output

13 19

30%的数据中,N<=100

100%的数据中,N<=1000,M<=5000,K<=10

HINT

 

Source

Day1

Solution

对于第一问,直接跑最大流算法即可。

对于第二问,在残量网络上建边,每一条边的流量为inf,费用为w,超级源跟1建边,流量为k,费用为0, 再跑最小费用最大流就好了。

(为什么可以这样? 在残量网络上,那些不需要扩容的边花费为0,所以必定会选中,不需要花费额外的花费)

 

02/22
10:52
图论 网络流

BZOJ 1877 [SDOI2009]晨跑 网络流-费用流

Description

Elaxia最近迷恋上了空手道,他为自己设定了一套健身计划,比如俯卧撑、仰卧起坐等 等,不过到目前为止,他坚持下来的只有晨跑。 现在给出一张学校附近的地图,这张地图中包含N个十字路口和M条街道,Elaxia只能从 一个十字路口跑向另外一个十字路口,街道之间只在十字路口处相交。Elaxia每天从寝室出发 跑到学校,保证寝室编号为1,学校编号为N。 Elaxia的晨跑计划是按周期(包含若干天)进行的,由于他不喜欢走重复的路线,所以 在一个周期内,每天的晨跑路线都不会相交(在十字路口处),寝室和学校不算十字路 口。Elaxia耐力不太好,他希望在一个周期内跑的路程尽量短,但是又希望训练周期包含的天 数尽量长。 除了练空手道,Elaxia其他时间都花在了学习和找MM上面,所有他想请你帮忙为他设计 一套满足他要求的晨跑计划。

Input

第一行:两个数N,M。表示十字路口数和街道数。 接下来M行,每行3个数a,b,c,表示路口a和路口b之间有条长度为c的街道(单向)。

Output

两个数,第一个数为最长周期的天数,第二个数为满足最长天数的条件下最短的路程长 度。

Sample Input

7 10

1 2 1

1 3 1

2 4 1

3 4 1

4 5 1

4 6 1

2 5 5

3 6 6

5 7 1

6 7 1

Sample Output

2 11

HINT

对于30%的数据,N ≤ 20,M ≤ 120。 对于100%的数据,N ≤ 200,M ≤ 20000。

Source

Day1

Solution

拆点网络流……

 

02/22
10:32
图论 网络流

codevs 1227 方格取数2 网络流-费用流

题目描述 Description

给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1,1)出发,可以往右或者往下走,最后到达(n,n),每达到一格,把该格子的数取出来,该格子的数就变成0,这样一共走K次,现在要求K次所达到的方格的数的和最大

输入描述 Input Description

第一行两个数n,k(1<=n<=50, 0<=k<=10)

接下来n行,每行n个数,分别表示矩阵的每个格子的数

输出描述 Output Description

一个数,为最大和

样例输入 Sample Input

3 1

1 2 3

0 2 1

1 4 2

样例输出 Sample Output

11

数据范围及提示 Data Size & Hint

1<=n<=50, 0<=k<=10

Solution

拆点跑费用流……

 

02/7
13:43
图论 网络流

网络流二十四题-搭配飞行员 网络流-最大流

问题描述

飞行大队有若干个来自各地的驾驶员,专门驾驶一种型号的飞机,这种飞机每架有两个驾驶员,需一个正驾驶员和一个副驾驶员。由于种种原因,例如相互配合的问题,有些驾驶员不能在同一架飞机上飞行,问如何搭配驾驶员才能使出航的飞机最多。


如图,假设有10个驾驶员,如图中的V1,V2,…,V10就代表达10个驾驶员,其中V1,V2,V3,V4,V5是正驾驶员,V6,V7,V8,V9,V10是副驾驶员。如果一个正驾驶员和一个副驾驶员可以同机飞行,就在代表他们两个之间连一条线,两个人不能同机飞行,就不连。例如V1和V7可以同机飞行,而V1和V8就不行。请搭配飞行员,使出航的飞机最多。注意:因为驾驶工作分工严格,两个正驾驶员或两个副驾驶员都不能同机飞行.

输入格式

输入文件有若干行 第一行,两个整数n与n1,表示共有n个飞行员(2<=n<=100),其中有n1名飞行员是正驾驶员. 下面有若干行,每行有2个数字a,b。表示正驾驶员a和副驾驶员b可以同机飞行。 注:正驾驶员的编号在前,即正驾驶员的编号小于副驾驶员的编号.

输出格式

输出文件有一行 第一行,1个整数,表示最大起飞的飞机数。

输入输出样例

输入文件名: flyer.in
10 5
1 7
2 6
2 10
3 7
4 8
5 9

输出文件名:flyer.out
4

Solution

首先这是一张二分图,求最大匹配数。然而我并不会匈牙利算法

把所有能配对的正飞行员和副飞行员连边,跑Dinic就可以啦。

还有询问匹配方案的版本,并没有找到 而且我也不会

给一个提交地址咯 http://cogs.pro/cogs/problem/problem.php?pid=14

 

02/7
13:21
图论 网络流

jubeeeeeat 网络流-最大流

描述

众所周知,LZF很喜欢打一个叫Jubeat的游戏。这是个音乐游戏,游戏界面是4×4的方阵,会根据音乐节奏要求玩家按下一些指定方块(以下称combo)。LZF觉得这太简单了,于是自己仿了个游戏叫Jubeeeeeat,唯一不同之处就是界面大小,Jubeeeeeat的界面为n×n的方阵。 在某一刻,界面同时出现了若干个combo。LZF终于觉得有些困难了,但毕竟LZF不是普通人,他有很多只手。LZF的手分为m只“肉质手”和q只“意念手”。顾名思义,“肉质手”是实际存在的手,每只肉质手都有5根手指,每根手指能按一个combo,但每只手的速度都不同,受限于此,LZF的每只肉质手的控制范围是一个固定大小的正方形。“意念手”即虚无之手,每只手只有1根手指,但控制范围为全局。 现在LZF想知道,他最多能按下多少个combo。

输入

输入文件名为 jubeeeeeat.in。 第1行输入三个正整数n,m,q。 接下来是一个n×n的01矩阵,描述combo的位置,1为combo。 最后m行每行三个正整数xi,yi,ai,分别表示第i只肉质手掌控区域左上方块的行、列和边长。(行、列从1数起)

输出

输出文件名为 jubeeeeeat.out。 输出一个正整数,表示最多能按下的combo数。

样例输入

3 1 3
1 0 1
1 1 1
1 0 1
1 1 2

样例输出

6

提示

【数据说明】 对于20%的数据,n=5,m=2,q=2; 对于50%的数据,1≤n≤20,1≤m, q≤50; 对于100%的数据,1≤n≤40,1≤m, q≤300,1≤xi, yi≤n,1≤xi+ai-1, yi+ai-1≤n。

Solution

一个非常裸的最大流。将肉质手向控制区域内的combo连边,流量为1,意志手向所有的combo连边,流量为1.源点向肉质手连流量为5的边,向意志手连流量为1的边,所有的combo与汇点连流量为1的边。

 

01/24
20:37
图论 网络流

POJ 3281 Dining 网络流-最大流

Description

Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

Input

Line 1: Three space-separated integers: N, F, and D Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

Output

Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes Sample Input

4 3 3
2 2 1 2 3 1
2 2 2 3 1 2
2 2 1 3 1 2
2 1 1 3 3

Sample Output

3

Hint

One way to satisfy three cows is: Cow 1: no meal Cow 2: Food #2, Drink #2 Cow 3: Food #1, Drink #1 Cow 4: Food #3, Drink #3 The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.

Source

USACO 2007 Open Gold

Soluiton

网络流的裸题,敲个Dinic存个板子。 顺便说一下Dinic。 Dinic多路增广,还用到了阻塞流?嗯对……
Dinic的优化:当前弧优化,以及分层优化(针对有环的情况)

关于这道题,给定n头牛,f种食物,d种饮料,每一头牛有喜欢其中的几种饮料和食物,但是每种食物和饮料只有一个。问能最大满足多少头牛同时吃到喜欢的食物,喝到喜欢的饮料。
很容易想到建两个源汇点s,t,s向每种食物/饮料连边,每种食物/饮料向对应的牛连边,牛再向对应的饮料/食物连边,然后每种饮料/食物向t连边,流量都是1. 可是这样的话,一头牛有可能吃到多种喜欢的食物,喝到多种喜欢的饮料,显然不能得到最优解。怎么处理呢?把每头牛拆成两个点,两个点之间连一条流量为1的边,这样就处理好了。

 

01/9
14:54
图论 点分治

BZOJ 2599 [IOI2011]Race 点分治

Description

给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000

Input

第一行 两个整数 n, k 第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)

Output

一个整数 表示最小边数量 如果不存在这样的路径 输出-1

Sample Input

4 3
0 1 1
1 2 2
1 3 4

Sample Output

2

HINT

 

Source

 

点分治…

 

01/8
19:39
图论 点分治

BZOJ 1468 tree 点分治

Description

给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K

Input

N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是k

Output

一行,有多少对点之间的距离小于等于k

Sample Input

7

1 6 13

6 3 9

3 5 7

4 1 3

2 4 20

4 7 2

10

Sample Output

5

HINT

Source

LTC男人八题系列

 

 

话说最近做了好几个叫tree的题…… 点分治……楼教主男人八题系列,好可怕QAQ

点分治,就是基于点的树的分治啊。首先要找到一个根(树的重心),然后呢把所有的路径分为两种:经过根的和不经过根的,经过根的直接计算,不经过的递归计算。这样会把子树内不必要的路径也计算上,所以再删去这一部分。

 

最后再附一篇看过的论文吧……

分治算法在树的路径问题中的应用

01/7
11:10
LCT 图论

BZOJ 3282 Tree LCT

Description

给定N个点以及每个点的权值,要你处理接下来的M个操作。操作有4种。操作从0到3编号。点从1到N编号。 0:后接两个整数(x,y),代表询问从x到y的路径上的点的权值的xor和。保证x到y是联通的。 1:后接两个整数(x,y),代表连接x到y,若x到Y已经联通则无需连接。 2:后接两个整数(x,y),代表删除边(x,y),不保证边(x,y)存在。 3:后接两个整数(x,y),代表将点X上的权值变成Y。

Input

第1行两个整数,分别为N和M,代表点数和操作数。 第2行到第N+1行,每行一个整数,整数在[1,10^9]内,代表每个点的权值。 第N+2行到第N+M+1行,每行三个整数,分别代表操作类型和操作所需的量。

Output

对于每一个0号操作,你须输出X到Y的路径上点权的Xor和。

Sample Input

3 3
1
2
3
1 1 2
0 1 2
0 1 1

Sample Output

3
1

HINT

1<=N,M<=300000

Source

动态树

 

 

LCT的板子题……

 

01/6
18:11
图论 数据结构 树链剖分 线段树

BZOJ 1036 [ZJOI2008]树的统计Count 树链剖分

Description

一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w。我们将以下面的形式来要求你对这棵树完成 一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v: 询问从点u到点v的路径上的节点的最大权值 I II. QSUM u v: 询问从点u到点v的路径上的节点的权值和 注意:从点u到点v的路径上的节点包括u和v本身

Input

输入的第一行为一个整数n,表示节点的个数。接下来n – 1行,每行2个整数a和b,表示节点a和节点b之间有 一条边相连。接下来n行,每行一个整数,第i行的整数wi表示节点i的权值。接下来1行,为一个整数q,表示操作 的总数。接下来q行,每行一个操作,以“CHANGE u t”或者“QMAX u v”或者“QSUM u v”的形式给出。 对于100%的数据,保证1<=n<=30000,0<=q<=200000;中途操作中保证每个节点的权值w在-30000到30000之间。

Output

对于每个“QMAX”或者“QSUM”的操作,每行输出一个整数表示要求输出的结果。

Sample Input

4
1 2
2 3
4 1
4 2 1 3
12
QMAX 3 4
QMAX 3 3
QMAX 3 2
QMAX 2 3
QSUM 3 4
QSUM 2 1
CHANGE 1 5
QMAX 3 4
CHANGE 3 6
QMAX 3 4
QMAX 2 4
QSUM 3 4

Sample Output

4
1
2
2
10
6
5
6
5
16

HINT

 

Source

 

树链剖分……剖完之后线段树维护。

 

01/6
17:24
LCT 图论

BZOJ 2631 tree LCT

Description

一棵n个点的树,每个点的初始权值为1。对于这棵树有q个操作,每个操作为以下四种操作之一:

+ u v c:将u到v的路径上的点的权值都加上自然数c;

-  u1 v1 u2 v2:将树中原有的边(u1,v1)删除,加入一条新边(u2,v2),保证操作完之后仍然是一棵树;

*  u v c:将u到v的路径上的点的权值都乘上自然数c;

/ u v:询问u到v的路径上的点的权值和,求出答案对于51061的余数。

Input

第一行两个整数n,q 接下来n-1行每行两个正整数u,v,描述这棵树 接下来q行,每行描述一个操作

Output

对于每个/对应的答案输出一行

Sample Input

3 2
1 2
2 3
* 1 3 4
/ 1 1

Sample Output

4

HINT

数据规模和约定

10%的数据保证,1<=n,q<=2000

另外15%的数据保证,1<=n,q<=5*10^4,没有-操作,并且初始树为一条链

另外35%的数据保证,1<=n,q<=5*10^4,没有-操作

100%的数据保证,1<=n,q<=10^5,0<=c<=10^4

Source

 

LCT……用了long long在BZOJ上是TLE,改成unsigned int 就好了。 TAT

 

01/5
21:50
LCT 图论

BZOJ 2002 [Hnoi2010]Bounce 弹飞绵羊 LCT

Description

某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏。游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数ki,当绵羊达到第i个装置时,它会往后弹ki步,达到第i+ki个装置,若不存在第i+ki个装置,则绵羊被弹飞。绵羊想知道当它从第i个装置起步时,被弹几次后会被弹飞。为了使得游戏更有趣,Lostmonkey可以修改某个弹力装置的弹力系数,任何时候弹力系数均为正整数。

Input

第一行包含一个整数n,表示地上有n个装置,装置的编号从0到n-1,接下来一行有n个正整数,依次为那n个装置的初始弹力系数。第三行有一个正整数m,接下来m行每行至少有两个数i、j,若i=1,你要输出从j出发被弹几次后被弹飞,若i=2则还会再输入一个正整数k,表示第j个弹力装置的系数被修改成k。对于20%的数据n,m<=10000,对于100%的数据n<=200000,m<=100000

Output

对于每个i=1的情况,你都要输出一个需要的步数,占一行。

Sample Input

4
1 2 1 1
3
1 1
2 1 1
1 1

Sample Output

2
3

HINT

 

Source

 

画画就发现是个图,用LCT维护即可

 

01/5
21:42
LCT 图论

BZOJ 2049 [Sdoi2008]Cave 洞穴勘测 LCT

Description

辉辉热衷于洞穴勘测。某天,他按照地图来到了一片被标记为JSZX的洞穴群地区。经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴。假如两个洞穴可以通过一条或者多条通道按一定顺序连接起来,那么这两个洞穴就是连通的,按顺序连接在一起的这些通道则被称之为这两个洞穴之间的一条路径。洞穴都十分坚固无法破坏,然而通道不太稳定,时常因为外界影响而发生改变,比如,根据有关仪器的监测结果,123号洞穴和127号洞穴之间有时会出现一条通道,有时这条通道又会因为某种稀奇古怪的原因被毁。辉辉有一台监测仪器可以实时将通道的每一次改变状况在辉辉手边的终端机上显示:如果监测到洞穴u和洞穴v之间出现了一条通道,终端机上会显示一条指令 Connect u v 如果监测到洞穴u和洞穴v之间的通道被毁,终端机上会显示一条指令 Destroy u v 经过长期的艰苦卓绝的手工推算,辉辉发现一个奇怪的现象:无论通道怎么改变,任意时刻任意两个洞穴之间至多只有一条路径。因而,辉辉坚信这是由于某种本质规律的支配导致的。因而,辉辉更加夜以继日地坚守在终端机之前,试图通过通道的改变情况来研究这条本质规律。然而,终于有一天,辉辉在堆积成山的演算纸中崩溃了……他把终端机往地面一砸(终端机也足够坚固无法破坏),转而求助于你,说道:“你老兄把这程序写写吧”。辉辉希望能随时通过终端机发出指令 Query u v,向监测仪询问此时洞穴u和洞穴v是否连通。现在你要为他编写程序回答每一次询问。已知在第一条指令显示之前,JSZX洞穴群中没有任何通道存在。

Input

第一行为两个正整数n和m,分别表示洞穴的个数和终端机上出现过的指令的个数。以下m行,依次表示终端机上出现的各条指令。每行开头是一个表示指令种类的字符串s("Connect”、”Destroy”或者”Query”,区分大小写),之后有两个整数u和v (1≤u, v≤n且u≠v) 分别表示两个洞穴的编号。

Output

对每个Query指令,输出洞穴u和洞穴v是否互相连通:是输出”Yes”,否则输出”No”。(不含双引号)

Sample Input

样例输入1 cave.in
200 5
Query 123 127
Connect 123 127
Query 123 127
Destroy 127 123
Query 123 127
样例输入2 cave.in
3 5
Connect 1 2
Connect 3 1
Query 2 3
Destroy 1 3
Query 2 3

Sample Output

样例输出1 cave.out
No
Yes
No
样例输出2 cave.out
Yes
No

HINT

数据说明
10%的数据满足n≤1000, m≤20000
20%的数据满足n≤2000, m≤40000
30%的数据满足n≤3000, m≤60000
40%的数据满足n≤4000, m≤80000
50%的数据满足n≤5000, m≤100000
60%的数据满足n≤6000, m≤120000
70%的数据满足n≤7000, m≤140000
80%的数据满足n≤8000, m≤160000
90%的数据满足n≤9000, m≤180000
100%的数据满足n≤10000, m≤200000
保证所有Destroy指令将摧毁的是一条存在的通道本题输入、输出规模比较大,建议c\\c++选手使用scanf和printf进行I\O操作以免超时

Source

 

简单的LCT操作

判断是否连通,只需看两个节点的祖先是否相同。